k^2-10-29=0

Simple and best practice solution for k^2-10-29=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k^2-10-29=0 equation:



k^2-10-29=0
We add all the numbers together, and all the variables
k^2-39=0
a = 1; b = 0; c = -39;
Δ = b2-4ac
Δ = 02-4·1·(-39)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{39}}{2*1}=\frac{0-2\sqrt{39}}{2} =-\frac{2\sqrt{39}}{2} =-\sqrt{39} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{39}}{2*1}=\frac{0+2\sqrt{39}}{2} =\frac{2\sqrt{39}}{2} =\sqrt{39} $

See similar equations:

| k62-10-29=0 | | 3(e+2)=12 | | (63)+(2x-4)+(6x+22)=180 | | 216=5^2x-1 | | 6x^2-30x−84=0 | | 4(5x+2)+3=3x-40 | | 15=3y-9 | | 2(q-9)=12 | | 2x+42=3(2x+2) | | 14=(e+3)×2 | | 1/2r2(3/4r-1)=1/4r+6 | | 3x(2x-7)=5x+2 | | (e+3)×2=14 | | 25/16x^2=125 | | -4–0.2x+11=-0.8x+10 | | 5/12+x=0.75 | | 8x-14=7x+5 | | -11x+15=-7 | | 32=8t | | 30n+15=25 | | 10x+7x=28+x | | (x-27)x3=90 | | 12t-(4+10)=1/4(16+32t) | | 12t-(4+10)=1/4(16+32t0 | | 1/2x=1/2x=2 | | w2=52 | | 12x+5x=-5x-18 | | 9w+3=4w-6 | | 6(2x-8+3=15 | | 3x-2=180-2x | | 8(t+2)-3(t-4)=6+8 | | 6+11x=4x-7,2 |

Equations solver categories